LBRG Optimal Control and Optimization Lab

The LBRG Optimal Control and Optimization Lab explores the intersection of lattice Boltzmann methods (LBM) and optimization techniques, with a strong focus on applications in process and biomedical engineering. Our research tasks spans from technical topics such as efficient algorithms for gradient computation and automated code generation of adjoint operators, to the mathematical development of new optimization methods and their theoretical foundations. Beyond methodology, we address challenging real-world problems, including inverse problems and topology optimization for complex engineering and biomedical systems. The inherently interdisciplinary nature of our work, combining numerical methods, optimization, and application-driven research, is a defining characteristic of the lab.
Monte Carlo sampling of turbulent round jets with OpenLB KIT
Resolved simulation of deformable red blood cell membranes with OpenLB

Lab Lead
Name Tel. E-Mail
+49 721 608 42801 shota.ito@kit.edu

Members
Name Tel. E-Mail
+49 721 608 43157 julius.jessberger@kit.edu
Student Members (Current and Former)
Name
Marc Heinzelmann, Simon Großmann, Felix Lukas Schuhmann, Adrian Fessler, Carmen Heidrich, Moritz Vogel, Felix Wedler, Ecem Öz, Björn Dennis Herrmann

Selected Publications

  • S. Ito, J. Jeßberger, S. Simonis, F. Bukreev, A. Kummerländer, A. Zimmermann, G. Thäter, G. R. Pesch, J. Thöming, and M. J. Krause. Identification of reaction rate parameters from uncertain spatially distributed concentration data using gradient-based pde constrained optimization. In: Computers & Mathematics with Applications (2024). DOI: https://doi.org/10.1016/j.camwa.2024.05.026.
  • S. Ito, S. Großmann, F. Bukreev, J. Jeßberger, and M. J. Krause Benchmark case for the inverse determination of adsorption parameters using lattice boltzmann methods and gradient-based optimization. In: Chemical Engineering Science (2025). DOI: https://doi.org/10.1016/j.ces.2025.121467.
  • S. Ito, A. Zimmermann, J. Jeßberger, S. Simonis, A. Kummerländer, F. Bukreev, J. Thöming, G. Pesch, M.J. Krause. Geometry Reconstruction from Magnetic Resonance Velocimetry Measurements via Solving an Inverse Fluid Flow Problem. Preprint, under review. DOI: https://ssrn.com/abstract=5313346.
  • A. Kummerländer, F. Bukreev, Y. Shimojima, S. Ito, and M. J. Krause. Large-scale simulations of turbulent flows using lattice Boltzmann methods on heterogeneous high performance computers. In: Preprint, under review. DOI: https://arxiv.org/abs/2506.21804.
  • F. Klemens, B. Förster, M. Dorn, G. Thäter, and M. J. Krause. "Solving fluid flow domain identification problems with adjoint lattice Boltzmann methods." Computers & Mathematics with Applications (2020). DOI: https://doi.org/10.1016/j.camwa.2018.07.010.
  • F. Klemens, S. Schuhmann, R. Balbierer, G. Guthausen, H. Nirschl, G. Thäter, and M. J. Krause. "Noise reduction of flow MRI measurements using a lattice Boltzmann based topology optimisation approach". Computers & Fluids (2020). DOI: https://doi.org/10.1016/j.compfluid.2019.104391.
  • J. Jeßberger, J. E. Marquardt, L. Heim, J. Mangold, F. Bukreev, and M. J. Krause. "Optimization of a micromixer with automatic differentiation". Fluids (2022). DOI: https://doi.org/10.3390/fluids7050144.
  • M. Rüttgers, M. Waldmann, S. Ito, C. Wüstenhagen, S. Grundmann, M. Brede, and A. Lintermann. Patient-specific lattice-Boltzmann simulations with inflow conditions from magnetic resonance velocimetry measurements for analyzing cerebral aneurysms. In: Computers in Biology and Medicine (2025). DOI: https://doi.org/10.1016/j.compbiomed.2025.109794.
´